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Summary

Pylon cross-sectional geometries that are in-
tended to improve the aerodynamics of the propul-
sion system installation were investigated on a
1/17th-scale, low-wing transport model in the Lang-
ley 16-Foot Transonic Tunnel. The basic design phi-
losophy for these pylons was to alleviate flow accel-
eration without introducing severe adverse pressure
gradients near the pylon-wing junction. This result
was achieved by means of a gradually diverging pylon
with the maximum thickness occurring at the wing
trailing edge. The pylon closure occurred aft of the
wing trailing edge. Other pylon cross-sectional ge-
ometries were also tried, but only the pylon design
described above and its hybrid derivative achieved
the desired result. The force data, surface static pres-
sure measurements, and surface flow visualization
data that were obtained support this result. Data
were taken at Mach numbers from 0.50 to 0.80, model
angles of attack from —4° to 6°, and pylon toe-in
angles from 0° to 3°.

Introduction

Propulsion integration for transport aircraft has
been a priority area in aerodynamic research and will
continue to play a crucial role in the development
and marketing of new-generation aircraft. Reduc-
tions in installed drag on the order of 1 percent of
total aircraft drag can translate into substantial fi-
nancial savings to airline operators. Some aspects of
propulsion integration that can be studied in order
to reduce the drag penalty associated with engine in-
stallation are the proximity of the engine nacelle to
the wing, the spanwise location of the engine-pylon
combination, pylon geometry, and the type of instal-
lation (i.e., under the wing, over the wing, or fuselage
mounted).

This study is part of an ongoing research program
in transport propulsion integration at the NASA
Langley Resecarch Center. The configuration used in
this study is a 1/17th-scale, low-wing transport air-
craft with pylons installed under the wings. The air-
craft has a supercritical wing section and is designed
for a cruise lift coefficient of 0.55 at a Mach number
of 0.77. Interference effects of flow-through nacelles
under the wings with bypass ratios of 6 and 18 have
been previously investigated on this model (refs. 1, 2,
and 3). Computational fluid dynamic analysis of the
fuselage-wing-pylon-nacelle geometry has also been
performed with an Euler code (ref. 4). The cur-
rent study concentrates on pylon-alone installations.
The eventual goal is to unify the lessons learned
from pylon-alone studies with those from pylon-

nacelle studies and produce a design methodology
for propulsion integration.

The impetus behind the current pylon cross-
sectional geometry study is the added flow accel-
eration and consequent lift loss caused by the in-
stallation of the pylon-nacelle assembly on the wing
lower surface. Pressure contours of the wing lower
surface were computed (ref. 4) with an Euler code
for the complete aircraft, i.e., for the fuselage, wing,
pylon, and nacelle. The results, which were in rea-
sonable agreement with experimental pressure data
(ref. 1), indicated high flow velocities induced on the
wing lower surface by the flow accelerating around
the thickest portion of the pylon. This effect may
have been compounded by the fact that the maxi-
mum thickness of the pylon occurred near the max-
imum thickness of the supercritical wing. These low
pressures resulted in a loss of lift.

Farther aft, adverse pressure gradients were im-
posed on the wing lower surface because the flow
compressed as it traversed the pylon trailing-edge
closure region. These adverse gradients could have
resulted in flow separation in this region with a con-
sequent increase in drag. An example of this type of
flow separation is shown in figure 1 where prominent
features are labeled. Here a flow-through nacelle rep-
resenting an engine with a bypass ratio of 6 (refs. 1,
2, and 3) was mounted at a nondimensional span-
wise wing station (7) of 0.340 on the model. The
large separation region, indicated by fluorescent oil
pooled at the separation line, demonstrates that im-
provement is needed in the pylon design. (Note that
the dark patch on the forward portion of the inboard
wing lower surface is from a shadow thrown by the

" pylon-nacelle assembly.)

These problems are believed to be avoidable with
a flat-sided pylon of increasing thickness whose clo-
sure is moved aft of the wing trailing cdge while
maintaining the pylon maximum thickness. In order
to minimize the adverse effects, the pylon should be
widest at the wing trailing edge (ref. 5). This type of
pylon is called a compression pylon. The compression
pylon is expected to have higher skin-friction drag
than a conventional partial-chord pylon because of
its larger wetted area. However, at cruise this effect
can be more than offset by lower interference drag.

The compression pylon design can be further re-
fined by varying the toe-in angle and also by tailor-
ing the outboard side of the pylon differently from
the inboard side to accommodate any cross flow aris-
ing from wing sweep and fuselage blockage. In this
paper, the latter geometry is referred to as a hybrid
pylon. The earlier pylon-nacelle studies (ref. 3) have



shown that the changes in pylon toe-in angle, though
for the most part minimally effective, can sometimes
result in lower installation drag.

The current investigation was conducted to com-
pare the installation effect of various pylon geome-
tries versus the wing without pylons (clean wing)
in terms of the distributions of wing surface pres-
sure coefficient, the amount of flow separation at
the pylon-wing junction, and the aerodynamic force
characteristics of the transport model.

Symbols and Abbreviations

BL buttline, in.

b wingspan, in.

Cy, lift coefficient, Lift/goc.S

Cp static pressure coefficient,
(P — Poc}/ 900

c local wing chord, in.

Cn section normal-force coefficient

d local pylon chord (defined to
be 0.95¢), in.

[+ mean aerodynamic chord, in.

FS fuselage station, in.

M Mach number

P static pressure, b/ m2

q dynamic pressure, 1b/in?

S wing reference arca, in?

WL waterline, in.

WRP wing reference plane

T local pylon ordinate, in.

y local pylon coordinate, in.

a angle of attack, deg

n nondimensional spanwise wing
station

Subscripts:

des design point

00 free-stream condition

Apparatus and Procedure

Wind Tunnel and Model Support

The present investigation was conducted in the
Langley 16-Foot Transonic Tunnel. This facility is a
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single-return, continuous-flow atmospheric wind tun-
nel with a test section of octagonal cross section
and a throat cross-sectional area of 199.15 ft?. The
31-ft-long test section (the maximum length at sub-
sonic speeds) has slots located at the corners of the
octagon that vent the test section to a surround-
ing plenum to provide transonic capability. The
test section airspeed is continuously adjustable be-
tween Mach numbers of 0.20 and 1.30 with an accu-
racy of +£0.005. The wall divergence in the test sec-
tion is adjusted as a function of the airstream dew
point and Mach number to minimize any longitudi-
nal static pressure gradients in the test section. No
wall divergence is necessary below a Mach number
of 0.825. The model was sting mounted and held
near the test section centerline at all angles of at-
tack by the support-system arrangement. Further
information on the wind tunnel and model support
equipment can be found in references 6 and 7.

Model

The sketch in figure 2(a), which shows the basic
research transport model in the clean wing configura-
tion (without pylons), includes the overall dimensions
and important geometric parameters. The photo-
graph in figure 2(b) shows a front view of the clean
wing model. This model is a 1/17th-scale represen-
tation of a 150-passenger, twin-engine transport de-
signed to cruise at My = 0.77 and C = 0.55. Fur-
ther information about the geometry of the model,
in addition to that given below, may be found in
reference 1.

Fuselage. The fuselage is 80 in. long, has a
maximum diameter of 9.0 in., and is comprised of an
ellipsoidal nose profile with circular cross sections, a
cylindrical midsection, and an afterbody of elliptical
cross sections with vertical major axes.

Wing. The planform geometry of the wing (see
fig. 2(c)) has a span of 79.668 in., an aspect ratio
of 10.795, a taper ratio of 0.275, and a quarter-chord
sweep of 21°.  The quarter-chord dihedral of the
wing reference trapezoid is 5.78°. Airfoil ordinates
and design information for the supercritical wing and
wing-fusclage fairing can be found in reference 1.

Pylons. Four different pylon cross sections were
studied. These were the NACA 0012, the NASA
SC(2)-0012, the compression, and the hybrid cross
sections. The pylon cross sections arc shown in
sketch A. The NASA SC(2)-0012 airfoil is designed
specifically for transonic flow regimes in an attempt
to improve the performance of the conventional
12-percent-thick airfoil (ref. 8). The two 0012 py-
lons were nearly full wing-chord pylons. As shown
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in figure 3(a), all pylons were set back from the wing
leading edge by 5 percent of the local wing chord. For
all pylons, the maximum thickness was defined rela-
tive to the local NACA 0012 pylon chord. The photo-
graphs in figures 3(b) and 3(c) show front and rear
views, respectively, of the model with the compres-
sion pylons installed, whereas the photograph in fig-
ure 3(d) shows a close-up view from below the same
pylons.

NACA 0012
NASA SC(2)-0012

 Gu—

>

Sketch A

Compression

The compression and the hybrid pylons extended
beyond the wing trailing edge but had approximately
the same maximum dimensional thickness as the
NACA 0012 pylons. The hybrid pylon, with an
inboard compression side and an outboard modified
NACA 0012 side, was expected (ref. 9) to provide a
compromise wing pressure distribution closest to the
clean wing pressure distribution. Table I lists the
coordinates of the four pylon cross scctions.

Two sets of pylons were constructed for each cross
section. One set of pylon pairs was sized with re-
spect to the local wing chord for installation at the
n = 0.340 location. The other set was sized for in-
stallation at the = 0.400 location. The outboard
location (1 = 0.400) was a possible alternative loca-
tion for a higher bypass ratio engine that might not
have sufficient ground clearance at n = 0.340. The
photographs of figure 3 show the pylons at n = 0.340.
The pylons were tested without the nacelles attached.

Instrumentation

Forces and moments were obtained on the com-
pletely metric model from an internal, six-component
strain gauge balance. The longitudinal location of
the balance moment center was slightly aft of the
quarter-chord of the wing mean acrodynamic chord.
(Sce fig. 2(a).) The model angle of attack was mea-
sured by using an accclerometer mounted in the
model nose. More than 300 surface pressure orifices

were located on the left wing. The spanwise location
of each orifice row is shown in figure 4. The orifices
on the lower surface were concentrated in the vicinity
of the pylon installation locations of = 0.340 and
0.400 so that local flow phenomena around the py-
lons could be examined in greater detail. All pressure
measurements on the wing were made by electroni-
cally scanning pressure modules mounted inside the
hollow, removable nose section of the model. Each
module contained 32 individual pressure transducers
capable of transmitting data simultaneously. Fur-
ther details of this instrumentation can be found in
reference 1. The pylons were not instrumented.

Tests

The tests were conducted over a Mach number
range from 0.50 to 0.80. This corresponds to a
Reynolds number range from 2.0 x 108 to 2.7 x 108
based on the wing mean aerodynamic chord. The
angle-of-attack range was from —4° to 6°. Acro-
dynamic force and pressure data were obtained for
the clean wing model shown in figure 2 and for
the model with the pylon configurations installed.
Four different pylon toe-in angles (nominally 0°, 1°,
2°, and 3°) were investigated for each pylon tested.
Toc-out angles were not investigated. 'Transition
grit strips were located on the model based on the
observations from oil flow studies on the clean wing
(ref. 1). Locations for the transition grit on the
wing, fusclage, and pylon are given in figures 5(a),
5(b), and 5(c), respectively. A fluorescent oil flow
technique was employed to obtain flow visualization
on the wing in the vicinity of the pylons to determine
the extent of flow separation in this region.

Data Reduction

Standard acrodynamic force and moment coeffi-
cients were computed using the methods and equa-
tions of reference 10. The trapezoidal planform ar-
eas of the wing and mean aerodynamic chord were
used as the reference arca and length, respectively.
Resulting model force and moment coefficients were
referred to the stability axis system with the moment
reference center located at the quarter-chord of the
wing mean acrodynamic chord (FS 41.902).

The model angle of attack was computed by
correcting the values from the onboard accelerom-
eter for wind tunnel upflow, which was determined
from clean wing tests of upright and inverted mod-
cls. Sting-cavity and fusclage-base pressure measure-
ments were used to correct the axial-force data to the
condition of free-stream static pressure acting on the
fuselage basc and in the sting cavity.



Results and Discussion

The effects of the pylon installations will be dis-
cussed in terms of the distributions of the wing pres-
sure coefficients that were measured as well as the
lift characteristics of the various configurations. Drag
data will not be included in the discussion because its
accuracy is questionable. Several flow visualization
photographs will be considered as well.

Effect of Pylons Installed at n = 0.340

The effect of toe-in angle on the lift characteristics
of the four pylons installed at n = 0.340 is shown in
figure 6. The variation in pylon toe-in angle had a
small effect on lift for all the pylon installations over
the full range of test Mach numbers. Figure 7 further
illustrates the minimal effect of pylon toe-in angle
for data near My = 0.77 and Cp = 0.55, the wing
design condition. Here the lift curves are presented
on a more precise scale near the cruise condition. The
smallest divisions on the lift and angle-of-attack axes
represent the accuracy of the lift and angle-of-attack
measurements, respectively; i.e., ACp = £0.01 and
Aa = £0.01°. Differences in measurements greater
than two axis divisions are significant. This criterion
leads to the conclusion that all toe-in angles tested
for each pylon installation produce essentially the
same level of lift for a given angle of attack. The
remainder of the discussion will consider only the
pylon cross section without regard to the pylon toe-in
angle.

Figure 8 compares the lift characteristics at
My =0.77 for cach of the pylons installed at
n = 0.340 and for the clean wing. Figure 9, which
shows data near the design lift point for the same
Mach number on a larger scale, indicates that the
compression pylon installation results in the lowest
lift loss relative to the clean wing. The hybrid and
NASA SC(2)-0012 pylon installations perform essen-
tially the same, whereas the NACA 0012 configu-
ration results in the greatest loss in lift of all the
configurations tested.

Figures 10 through 13 show the surface static
pressure coeflicients at the clean wing design con-
dition for each of the pylon installations. The clean
wing pressure cocfficients are represented by the dot-
ted lines. (No symbols are shown for the clean wing
data for clarity.) The pressure data for the upper
surface of the wing show that the compression py-
lon installation has only a slight effect on the upper
surface flow (fig. 12(a)). For the compression pylon
installation, the local velocity increases, as indicated
by a higher negative C, peak, for the first 20 percent
of the wing chord at = 0.340. The compression py-
lon installation also has the lowest effect on the static
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pressure distribution of the wing lower surface, as can
be seen in figures 10(b) through 13(b).

The NACA 0012 pylon installation (fig. 10(a))
had the greatest influence on the surface static pres-
sures on the wing upper surface because an angle-of-
attack increase of about 0.22° relative to the clean
wing was required with the NACA 0012 pylons in-
stalled to achieve the design lift condition. This
angle-of-attack increase was necessitated by the ac-
celeration of the lower surface flow as indicated in
figure 10(b), which shows that the strongest effect of
the NACA 0012 pylon installation was measured at
the 7 = 0.310 location as indicated by the increased
negative ) coefficients. More negative pressure co-
efficients here indicate a local lift loss which had to
be countered by an increase in model angle of at-
tack to achieve the desired lift. An adverse effect
of this angle-of-attack increase is seen in the pres-
sure coefficient distribution on the upper surface at
n = 0.550 (fig. 10(a)), where evidence is seen of a
shock occurring at about 60 percent of the local wing
chord.

The levels of pressure coefficient distributions
(Cp) for the NASA SC(2)-0012 and hybrid pylon in-
stallations fall between the levels for the compres-
sion and NACA 0012 pylon installations. The upper
surface Cp levels for the NASA SC(2)-0012 installa-
tion were slightly more negative than those for the
hybrid pylon installation over much of the wing sur-
face. This change is largely a result of the fact that
the data for the NASA SC(2)-0012 installation are
for a lift coefficient of 0.56, whereas the data for the
hybrid installation are for a lift coefficient of 0.54.
The lower surface C)p distributions are less sensitive
to small variations in model lift coefficient, which al-
lows a meaningful comparison to be made here. Re-
call that figure 9 showed that the NASA SC(2)-0012
and hybrid pylon installations resulted in essentially
the same lift performance at the cruise condition.
Even though the overall effect of these two instal-
lations was similar, figures 11(b) and 13(b) indicate
that the local effects of the individual pylons were
noticeably different. For the NASA SC(2)-0012 py-
lon installation, the greatest disturbance to the flow
is scen at the 7 = 0.310 location. A relatively sharp
negative Cp, peak occurs at about 35 percent of the
local wing chord, and separation may be indicated by
the flattening of the ), distribution between 50 and
75 percent of the local wing chord. Measurements
for the hybrid pylon installation do not show a se-
vere negative pressure peak or any indication of flow

~ separation, but as can be seen in figure 13(b), the hy-

brid pylon installation did cause a slight shift toward



more negative pressure coefficients on the wing lower
surface between n = 0.277 and 0.428.

Figures 14 through 17 show the Cj distributions
on the wing lower surface at n = 0.310 and 0.375. For
a free-stream Mach number of 0.50 (fig. 14), the CY
distributions for the pylon installations do not reflect
any severe effects such as the formation of shocks or
separation. At this Mach number, the most notable
effects on the flow are the more negative pressures
induced by the NACA 0012 and NASA SC(2)-0012
pylon installations at 7 = 0.310. As Mach number
is increased, the effects of the various pylon installa-
tions become more distinct. Figure 16(a) shows that
at Moo = 0.77 and n = 0.310, the NACA 0012 py-
lon induced the sharpest gradients on the wing, and
both the NACA 0012 and NASA SC(2)-0012 pylons
may have caused separation as indicated by the lev-
eling off of the Cj, distribution between about 60 and
80 percent of the local wing chord. At My, = 0.80
(fig. 17), similar effects occur again at n = 0.310 but
to a greater extent. On the outboard side of the pylon
(n = 0.375), the compression pylon had the smallest
effect on the wing surface pressures for z/c < 0.5. At
Mach numbers up to 0.77, the outboard pressures for
the compression pylon installation are virtually the
same as those for the clean wing. Beyond the peak
value, the Cp distributions for the NACA 0012 py-
lons are closest to those of the clean wing, which
suggests that the outboard sides of the compres-
sion and hybrid pylons can be modified for optimum
performance.

The pressure data indicated various flow features
including separation. Flow visualization was used to
determine whether these regions of separation were
actually present. Figure 18 shows photographs of flu-
orescent oil flow visualization on the wing lower sur-
face for My = 0.50 and Cy, = 0.55. In figure 18(a)
the lower surface flow on the clean wing is shown to
be fully attached at a = 1.5°. The transition grit is
indicated in the photograph by the white line run-
ning from root to tip. Figures 18(b) and 18(c) show
the effects of the NASA SC(2)-0012 and compression
pylons on the flow field of the wing lower surface at
a = 1.8° and a = 1.6°, respectively. A comparison of
these two figures shows that the NASA SC(2)-0012
pylon installation perturbed the local flow more than
the compression pylon installation. The separation
region (not to be confused with the shadow thrown
from the pylon on the inboard part of the wing) to-
ward the aft end of the pylon near the pylon-wing
junction is larger for the NASA SC(2)-0012 pylon
than for the compression pylon.

Figurc 19 shows photographs of flow visualiza-
tion for the wing upper surface for My = 0.77 and

Cyp = 0.55. Flow separation occurs near the trail-
ing edge of the wing from the wing root out to
about the 40-percent wing-semispan location. The
different pylons installed at n = 0.340 produced only
slightly different effects on the wing upper surface
flow. Flow visualization photographs for the wing
lower surface at My, = 0.77 are shown in figure 20,
where figure 20(b) clearly shows large regions of flow
separation on both the inboard and outboard sides
of the NASA SC(2)-0012 pylon. A comparison of
figure 20(b) with the flow visualization shown in fig-
ure 20(c) for the compression pylon installation re-
veals why the compression pylon has a better lift per-
formance. Figure 20(c) shows that the compression
pylon has a relatively small effect on the nature of
the flow on the wing lower surface. The pressure
distributions of the wing lower surface presented ear-
lier indicate that the NACA 0012 and hybrid pylons
perturb the wing flow in a manner similar to that
of the NASA SC(2)-0012 and compression pylons,
respectively. The NACA 0012 and hybrid pylons
are expected to result in wing lower surface separa-
tions similar to those for the NASA SC(2)-0012 and
compression pylons, respectively.

Figure 21 shows how the wing loading varied
along the span for each of the pylons installed at
n = 0.340 and for the clean wing. The data for the
compression pylon installation are nearly the same
as the data for the clean wing configuration. A
slight loss in section normal force for the compression
pylon installation is evident at the n = 0.400 station.
The other pylon installations caused a much larger
loss in section lift at n = 0.400. As a consequence
of the higher losses near the pylon location, the
model was required to be at a higher angle of attack
to maintain thc desired overall lift. This increase
in angle of attack caused the outboard portion of
the wing to be more heavily loaded. This load
increasc implies a structural weight penalty and may
introduce outboard shocks on the wing upper surface
that can result in an increase in model drag.

Effect of Pylons Installed at n = 0.400

In addition to the pylons installed at 7 = 0.340,
data were obtained for the pylons installed at
n = 0.400. Figures 22 through 32 contain data rela-
tive to the pylons installed at n = 0.400. Figure 22
shows the lift characteristics of the clean wing and
the pylon-installed configurations for My = 0.77.
The data indicate that the NACA 0012 and NASA
SC(2)-0012 pylon installations reduced the lift-curve
slope relative to the clean wing. The compression and
hybrid pylon installations reduce the level of lift for
a given angle of attack but maintain nearly the same
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lift-curve slope as the clean wing. (This effect was
also observed for the n = 0.340 installations (fig. 8).)
Figure 23 shows the lift data for the same condition
as that in figure 22, but on a more precise scale. The
compression pylon installation at 7 = 0.400 had the
least effect on the angle of attack required to achieve
a given level of lift, as was also the case at n = 0.340.

Figures 24 through 27 depict the static pressure
coefficients on the wing surface at the cruise condi-
tion for the four pylons installed at 7 = 0.400. The
dotted lines in the figures represent the clean wing
data. Flow features similar to those found in fig-
ures 10 through 14 for n = 0.340 can be seen in the
data for the n = 0.400 installations as well. In partic-
ular, regions of separation apparently exist on the in-
board sides of the NASA SC(2)-0012 and NACA 0012
pylons. Additionally, the static pressure distribution
associated with the compression pylon installation is
nearest the clean wing pressure distribution, which
is in agreement with the lift data shown in figures 22
and 23.

Figures 28 through 31 show the static pressure co-
efficients on the lower surface of the wing for the mea-
surement locations nearest the inboard and outboard
sides of the pylon. In general, the compression pylon
installation caused the smallest departure from the
clean wing pressure levels from My = 0.74 (fig. 29)
to My = 0.80 (fig. 31). The NASA S5C(2)-0012 and
NACA 0012 pylons (which affected the lift charac-
teristics of the model the most) caused greater flow
disturbances than either the compression or hybrid
pylons. The NASA SC(2)-0012 pylon appeared to
cause the greatest extent of separation on the wing
lower surface at 1 = 0.375, whereas the NACA 0012
pylon induced higher local velocities near the pylon
for free-stream Mach numbers above 0.50, as indi-
cated by the more negative pressure coefficients near
x/c =0.30. The wing loadings for all the pylon in-
stallations (1 = 0.400) and for the clean wing are
shown in figure 32. Once again, as was the case for
the 7 = 0.340 pylon location, the compression pylon
configuration affected the wing loading the least of
the four pylon installations. The hybrid pylon did
slightly better than either the NASA SC(2)-0012 py-
lon or the NACA 0012 pylon in terms of matching
the clean wing loading.

Concluding Remarks

Pylon cross scctions were investigated on a
1/17th-scale, low-wing transport model in the Lang-
and its hybrid derivative scem promising from the
standpoint of better acrodynamic integration for the
following reasons:
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1. Flow acceleration can be alleviated without intro-
ducing severe adverse pressure gradients near the
pylon-wing junction. The flow acceleration can
be reduced by means of a gradually diverging py-
lon with maximum thickness at the wing trailing
edge. The pylon trailing-edge closure (flow com-
pression region) occurs aft of the wing trailing
edge.

2. The resulting wing pressure distributions are close
to those for the clean wing, which implies a small
loss of lift and also minimal flow separation at
the pylon-wing junction. Flow visualization data
confirm the minimal separation.

3. The trends are similar for two different pylon
locations on the wing.

4. Changes in pylon geometry (“airfoil shape”) have
more influence on lift coefficient and pressure
coefficient than minor variations in pylon toe-in
angle (“airfoil angle of attack”).

Although this study of generic pylon cross
sections has indicated some uscful performance
trends, the following important issues should be
resolved:

1. The compression pylon, with its bulkier aft end
and thinner forward end, poses a structural chal-
lenge for conventionally mounted forward engines.
This problem is not as crucial for the hybrid
pylon because it has a more uniform thickness
distribution.

2. The nature and extent of the separated flow at
the pylon-wing junction are crucial determinants
of installation drag. However, high Reynolds
number studies are needed because this kind of
pressure-gradient-induced separation can be quite
different at full-scale Reynolds numbers.

3. The compression pylon and hybrid pylon con-
cepts should be tested with a nacelle attached
because the presence of a nacelle can, depending
on proximity, further compound or alleviate flow
accelerations and gradients.

4. For nacelles very close to the wing and for very
high bypass ratio nacelles, the effects of fan and
core exhausts should be considered.

5. Three-dimensional inverse-design methods should
be used to design pylon and fillet geometry from
prescribed pressure distributions.

[
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6.

A pylon geometry might only be good at a single
design point, whereas practical implementation
can require geometry optimization for multipoint
design.

NASA Langley Research Center
Hampton, VA 23681-0001
April 12, 1993
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{a) NACA 0012 pylon

Outboard/Inboard
z/c y/c
0.00000 | 0.00000
.00154 .00688
.00616 .01350
.01382 .01985
.02447 02589
.03806 03158
.05450 .03687
.07368 04171
.09549 .04605
.11980 .04985
.14645 .05308
17528 06571
.20611 05771
.23875 .05909
.27300 05985
.30866 .06000
.34549 .05957
.38328 .05861
42178 05715
46077 .05524
.50000 .05294
.563923 .05030
.57822 .04738
.61672 .04424
.65451 .04092
69134 03748
72700 .03396
76125 03042
.79389 02691
82472 .02345
.85355 .02011
.88020 .01691
90451 01391
192632 01115
.94550 .00866
196194 .00648
97553 .00464
.98618 .00318
.99384 .00212
.99846 .00148
1.00000 .00126

Table I. Coordinates of the Four Pylon Cross Sections

(b) NASA SC(2)-0012 pylon

Outboard/Inboard Outboard/Inboard Outboard/Inboard
z/cd y/c z/d y/c z/d y/c
0.00000 | 0.00000 0.33000 | 0.05950 0.67000 | 0.04450
.00200 .00910 .34000 .05960 68000 .04330
.00500 .01390 35000 .05970 .69000 .04200
.01000 .01860 .36000 .05980 .70000 .04080
.02000 .02480 .37000 .06000 .71000 .03950
.03000 02910 .38000 .06000 .72000 .03820
.04000 .03240 .39000 .06000 .73000 .03700
.05000 .03500 .40000 .06000 74000 .03570
.06000 .03730 .41000 .06000 .75000 03450
.07000 .03930 .42000 .05980 .76000 .03320
.08000 .04110 43000 .05970 77000 03190
.09000 .04280 .44000 .05960 78000 03070
.10000 04420 45000 05950 .79000 02940
.11000 .04560 .46000 .05920 .80000 .02820
12000 .04680 .47000 .05900 .81000 .02690
.13000 .04800 .48000 .05880 .82000 .02560
.14000 .04900 .49000 .05840 .83000 .02440
.15000 .05000 .50000 .05800 .84000 02310
.16000 .05100 .51000 .05770 .85000 02190
.17000 .05180 .52000 05730 .86000 .02060
.18000 .05260 .53000 .05680 .87000 .01930
.19000 .05340 .54000 .05640 .88000 .01810
.20000 .05410 .55000 .05580 .89000 .01680
.21000 .05470 .56000 .05520 .90000 .01560
.22000 .05530 .57000 .05460 .91000 .01430
.23000 .05590 .58000 .05380 .92000 .01300
.24000 .05640 .59000 .05310 .93000 .01180
.25000 .05680 .60000 .05230 .94000 .01050
.26000 .05730 .61000 .05130 .95000 .00930
27000 05770 62000 .05040 .96000 .00800
.28000 .05800 .63000 .04930 .97000 .00670
.29000 .05840 .64000 .04820 .98000 .00550
30000 .05880 .65000 .04700 .99000 .00420
31000 .05900 .66000 .04580 1.00000 .00300

.32000 .05920 R

W



(c) Compression pylon

Table I. Concluded

(d) Hybrid pylon

Outboard /Inboard
z/c y/c
0.00000 0.00000

.00130 .00670
.00500 .01170
.01090 .01520
.01880 .01740
.02830 .01870
.03940 .01950
.05000 .02000
.20570 .02660
37190 .03360
.53820 .04060
.70440 .04760
87070 .05460
91150 .05620
95220 05770
99300 .05850
1.03380 .05780
1.07450 .05410
1.11530 .04590
1.15610 03320
1.18390 .02340
1.21170 .01360
1.23940 .00370
1.25000 .00000

Outboard Inboard
x/c y/c z/cd y/c
0.00000 0.00000 0.00000 0.00000
.00250 .01138 .00130 —.00670
.01250 .02325 .00500 —.01170
.03750 .03638 .01090 —.01520
.05205 .04105 .01880 —.01740
.07500 .04663 .02830 —.01870
12155 05478 .03940 —.01950
.19196 .06295 04731 —.01990
.26265 .06839 .06244 —.02101
.33345 07196 .19534 —.02623
.40430 07412 32821 —.03176
.47519 .07500 .46109 —.03736
.54607 .07454 .59396 -.04295
.61695 07282 .72684 —.04865
.68778 .06974 .85971 —.05416
75848 .06453 .99265 —.05753
.82893 05674 1.05014 —.05746
.89926 .04784 1.09025 —.05094
.96960 .03903 1.12034 —.04434
1.03995 .03019 1.15042 —.03497
1.11028 02129 1.20056 —.01749
1.18063 01245 1.24370 —.00220
1.25000 .00000 1.25000 |  .00000
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Rotation center at
wing leading edge

3° maximum
toe-in angle
g \

NACA 0012 and Compression
NASA SC(2)-0012 and hybrid

NN

1.25¢’
(a) Sketch showing geometry of pylons. All pylons were set back from the wing leading edge by 5 percent of

the local wing chord.

Figure 3. Details of pylon installation.
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»‘ l+2.24
39.834

s

0.1-in. band of

No. 120 silicon carbide grit
except where noted

Y
0.1-in.
band of

8.0 No. 100
silicon
carbide

19.917 gt
br 1.0 1.0~—W :
6.45 —=4.07
15.934 1.0
Woa O'QW
11.638
14 14
-— 5.725
BL )
Upper surface Fuselage centerline Lower surface

(a) Wing locations.

Figure 5. Location of boundary-layer transition strips on model. Lincar dimensions are given in inches.
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0.1 =

/ /—No. 100 silicon carbide grit

(b) Fuselage nose location.

A

No. 120 silicon grit on both sides (0.10-in-wide strip)

ST

(¢) Typical location of pylon transition grit.

Figure 5. Concluded.
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Toe-in

angle, deg
0 0
O 1
O 2
A 3
8 NACA 0012 Compression o
/
6 ﬁ 4NN
4 -
Cr, )P
2 f,
o
04° ?"
-2
8 NASA SC(2)-0012 Hybrid
4
.6
4
Ct ) P
2 O/!b' /
02 e
¥ IS
-2
-4 -2 0 2 4 -4 -2 0 2 4
a, deg a, deg

(a) Moo = 0.50.

Figurc 6. Effect of pylon toc-in angle on lift characteristics for pylons installed at n = 0.340.
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Toe-in
angle, deg

o 0
o 1
o 2
A 3
g . NACA 0012 JL o
-2 .
g . NASA 5((2)-0012
P
6 e
-4
0 Qf -
0]
-2
4 2 0 2 4 -4
a, deg

(b) My = 0.74.

Figure 6. Continued.
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> 00

NACA 0012

.8
&%

g —NASA SC(2)-0012
' Y
o

Toe-in
angle, deg

W DN

Compression

Hybrid

(c) Mx = 0.77.

Figure 6. Continucd.
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Toe-in

angle, deg
o 0
a 1
< 2
A 3
8 NACA 0012 Compression
6
4
21
0e
-2
8 NASA SC(2)-0012 Hybrid
o o®
.6 - S B
o o
2 Bﬁw
0 &
5"
-2 :
-4 -2 0 2 4 -4 -2 0 2 4
a, deg a, deg

(d) Mx = 0.80.

Figure 6. Concluded.




.60

50 L

.60

NACAOO12 [HE| i

NASA SC(2)-0012 S

Compression - :

9

1.0

o, deg

11 1.

Figure 7. Effect of pylon toe-in angle on lift characteristics near the design point (M = 0.77 and C'f, = 0.55)
for pylons installed at = 0.340.
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.6
4
CL

2
o Clean wing
O NACA 0012

0 o NASA SC(2)-0012
a Compression
N Hybrid

-2
-4 -2 0 2 4
o, deg

Figure 8. Comparison of lift characteristics for clean wing and for pylons installed at n = 0.340 for My = 0.77.

o Clean wing

O NACA 0012

O NASA SC(2)-0012
A Compression

b Hybrid

a, deg

Figure 9. Comparison of lift characteristics for clean wing and for pylons installed at 7 = 0.340 for M, = 0.77.
Detail is near Cj, = 0.55.
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-1.00

-.75
-.50
-25
Cp 0
25
.50
o Clean wing
O NACA 0012
o NASA SC(2)-0012
75 A Compression
N Hybrid
1.00
0 2 4 .6 8 1.0
x/c
(a) n =0.310.

Figure 14. Comparison of static pressure coeflicients on wing lower surface of various configurations for
My = 0.50 and C}, = 0.55 with pylons installed at 7 = 0.340.
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100 ——

-75 e

-.50

Clean wing
NACA 0012
NASA SC(2)-0012
Compression

.75

32

F>Oo0Oo0

Hybrid

1.00

x/c
(b) n = 0.375.

Figure 14. Concluded.
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-1.00

-75

Y

-25

.

25

.50
o Clean wing
O NACA 0012

; o NASA SC(2)-0012

75 B A Compression

b Hybrid
1.00
0 2 4 .6 8 1.0
x/c
(a) n = 0.310.

Figure 15. Comparison of static pressure coefficients on wing lower surface of various configurations for
My = 0.74 and Cp, = 0.55 with pylons installed at = 0.340.
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-1.00

-75 —

-.50

-25

25

.50

Clean wing
NACA 0012
NASA SC(2)-0012
Compression
Hybrid

a5

Fpe>Oo00

1.00 L

x/c
(b) 5 = 0.375.

Figure 15. Concluded.

ST | BN 1111



-1.00

.75 F\

D
50 A

S A

i

C 0 \
p ‘\ N

25 —t

.50
o Clean wing
O NACA 0012
< NASA SC(2)-0012

75 A Compression
N Hybrid

1.00 [
0 2 4 .6 8 1.0
x/c
(a) n = 0.310.

Figure 16. Comparison of static pressure coefficients on wing lower surface of various configurations for
My = 0.77 and Cf, = 0.55 with pylons installed at n = 0.340.
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.50

Clean wing
NACA 0012
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Compression

.75
Hybrid

Fe>oao

1.00

x/c
(b) 7 = 0.375.

Figure 16. Concluded.
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-1.00

-75
-.50
-25
Cp 0
.25 B R
.50
% Clean wing
o NACA 0012
o NASA SC(2)-0012
.75 A Compression
b Hybrid
1.00 [
0 2 4 .6 .8 1.0
x/c
(a) n=0.310.

Figure 17. Comparison of static pressure coefficients on wing lower surface of various configurations for
o« = 0.80 and C, = 0.55 with pylons installed at n = 0.340.
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Figure 17. Concluded.
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o} Clean wing
O NACA 0012
<o NASA SC(2)-0012
a Compression
N Hybrid

Figure 22. éomparison of lift characteristics
Moo = 0-77. i

pp>O0OO0

o, deg

for clean wing and for pylons installed at 77 = 0.400 with

_Clean wing
NACA 0012
NASA SC(2)-0012
Compression
Hybrid

Figure 23. Comparison of lift characteristics
0o = 0.77. Detail near Cp, = 0.55.

a, deg

for clean wing and for pylons installed at n = 0.400 with
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o Clean wing
O NACA 0012
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5 A Compression
b Hybrid
1.00 [ [ T
0 2 4 .6 .8 1.0
x/c
(a) 7= 0.375.

Figure 28. Comparison of static pressure coefficients on wing lower surface of various configurations for
My = 0.50 and C;, = 0.55 with pylons installed at = 0.400.
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Figure 28. Concluded.
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Figure 29. Comparison of static pressure coefficients on wing lower surface of various configurations for
My = 0.74 and C}, =~ 0.55 with pylons installed at = 0.400.
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Figure 29. Concluded.
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Figure 30. Comparison of static pressure coefficients on wing lower surface of various configurations for
My = 0.77 and Cy, = 0.55 with pylons installed at n = 0.400.
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Figure 30. Concluded.
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Figure 31. Comparison of static pressure coefficients on wing lower surface of various configurations for

My, = 0.80 and C}, = 0.55 with pylons installed at = 0.400.
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Figure 31. Concluded.
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